Abstract

Calibration of a microsimulation model (MSM) is a challenging but crucial step for the development of a valid model. Numerous calibration methods for MSMs have been suggested in the literature, most of which are usually adjusted to the specific needs of the model and based on subjective criteria for the selection of optimal parameter values. This article compares 2 general approaches for calibrating MSMs used in medical decision making, a Bayesian and an empirical approach. We use as a tool the MIcrosimulation Lung Cancer (MILC) model, a streamlined, continuous-time, dynamic MSM that describes the natural history of lung cancer and predicts individual trajectories accounting for age, sex, and smoking habits. We apply both methods to calibrate MILC to observed lung cancer incidence rates from the Surveillance, Epidemiology and End Results (SEER) database. We compare the results from the 2 methods in terms of the resulting parameter distributions, model predictions, and efficiency. Although the empirical method proves more practical, producing similar results with smaller computational effort, the Bayesian method resulted in a calibrated model that produced more accurate outputs for rare events and is based on a well-defined theoretical framework for the evaluation and interpretation of the calibration outcomes. A combination of the 2 approaches is an alternative worth considering for calibrating complex predictive models, such as microsimulation models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.