Abstract

Variable selection for high dimensional data has recently received a great deal of attention. However, due to the complex structure of the likelihood, only limited developments have been made for time-to-event data where censoring is present. In this paper, we propose a Bayesian variable selection scheme for a Bayesian semiparametric survival model for right censored survival data sets. A special shrinkage prior on the coefficients corresponding to the predictor variables is used to handle cases when the explanatory variables are of very high-dimension. The shrinkage prior is obtained through a scale mixture representation of Normal and Gamma distributions. Our proposed variable selection prior corresponds to the well known lasso penalty. The likelihood function is based on the Cox proportional hazards model framework, where the cumulative baseline hazard function is modeled a priori by a gamma process. We assign a prior on the tuning parameter of the shrinkage prior and adaptively control the sparsity of our model. The primary use of the proposed model is to identify the important covariates relating to the survival curves. To implement our methodology, we have developed a fast Markov chain Monte Carlo algorithm with an adaptive jumping rule. We have successfully applied our method on simulated data sets under two different settings and real microarray data sets which contain right censored survival time. The performance of our Bayesian variable selection model compared with other competing methods is also provided to demonstrate the superiority of our method. A short description of the biological relevance of the selected genes in the real data sets is provided, further strengthening our claims.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.