Abstract

We develop a novel Bayesian method to select important predictors in regression models with multiple responses of diverse types. A sparse Gaussian copula regression model is used to account for the multivariate dependencies between any combination of discrete and/or continuous responses and their association with a set of predictors. We use the parameter expansion for data augmentation strategy to construct a Markov chain Monte Carlo algorithm for the estimation of the parameters and the latent variables of the model. Based on a centered parameterization of the Gaussian latent variables, we design a fixed-dimensional proposal distribution to update jointly the latent binary vectors of important predictors and the corresponding nonzero regression coefficients. For Gaussian responses and for outcomes that can be modeled as a dependent version of a Gaussian response, this proposal leads to a Metropolis-Hastings step that allows an efficient exploration of the predictors’ model space. The proposed strategy is tested on simulated data and applied to real datasets in which the responses consist of low-intensity counts, binary, ordinal and continuous variables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.