Abstract

Summary We consider a Bayesian forecasting system to predict the dispersal of contamination on a large scale grid in the event of an accidental release of radioactivity. The statistical model is built on a physical model for atmospheric dispersion and transport called MATCH. Our spatiotemporal model is a dynamic linear model where the state parameters are the (essentially, deterministic) predictions of MATCH; the distributions of these are updated sequentially in the light of monitoring data. One of the distinguishing features of the model is that the number of these parameters is very large (typically several hundreds of thousands) and we discuss practical issues arising in its implementation as a realtime model. Our procedures have been checked against a variational approach which is used widely in the atmospheric sciences. The results of the model are applied to test data from a tracer experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.