Abstract
We make use of a Bayesian description of the neural network (NN) training for the calculation of the uncertainties in the NN prediction. Having uncertainties on the NN prediction allows having a quantitative measure for trusting the NN outcome and comparing it with other methods. Within the Bayesian framework, the uncertainties can be calculated under different approximations. The NN has been trained with the purpose of inferring ion and electron temperature profile from measurements of a X-ray imaging diagnostic at W7-X. The NN has been trained in such a way that it constitutes an approximation of a full Bayesian model of the diagnostic, implemented within the Minerva framework. The network has been evaluated using measured data and the uncertainties calculated under different approximations have been compared with each other, finding that neglecting the noise on the NN input can lead to an underestimation of the error bar magnitude in the range of 10%-30%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.