Abstract

Recently, advances in time-varying quantile modeling have proven effective in financial Value-at-Risk forecasting. Some well-known dynamic conditional autoregressive quantile models are generalized to a fully nonlinear family. The Bayesian solution to the general quantile regression problem, via the Skewed-Laplace distribution, is adapted and designed for parameter estimation in this model family via an adaptive Markov chain Monte Carlo sampling scheme. A simulation study illustrates favorable precision in estimation, compared to the standard numerical optimization method. The proposed model family is clearly favored in an empirical study of 10 major stock markets. The results that show the proposed model is more accurate at Value-at-Risk forecasting over a two-year period, when compared to a range of existing alternative models and methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.