Abstract
In this study, we propose a prior on restricted Vector Autoregressive (VAR) models. The prior setting permits efficient Markov Chain Monte Carlo (MCMC) sampling from the posterior of the VAR parameters and estimation of the Bayes factor. Numerical simulations show that when the sample size is small, the Bayes factor is more effective in selecting the correct model than the commonly used Schwarz criterion. We conduct Bayesian hypothesis testing of VAR models on the macroeconomic, state-, and sector-specific effects of employment growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.