Abstract

It is introduced the proportional hazards frailty model to allow a discrete distribution for the frailty variable. Frailty zero can be interpreted as being immune or cured. It is defined a class of survival models induced by a discrete frailty having a mixed Poisson distribution, which can account for unobserved dispersion. Further, a new regression to evaluate the effects of covariates in the cure fraction is constructed. Several former cure survival models are special cases of the proposed modeling framework. The inferential approach is based on Bayesian methods. Some simulation results are provided to assess the performance of the new regression. Its importance is illustrated by means of an application to colorectal cancer data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.