Abstract

It is well known that the integration among different data-sources is reliable because of its potential of unveiling new functionalities of the genomic expressions, which might be dormant in a single-source analysis. Moreover, different studies have justified the more powerful analyses of multi-platform data. Toward this, in this study, we consider the circadian genes' omics profile, such as copy number changes and RNA-sequence data along with their survival response. We develop a Bayesian structural equation modeling coupled with linear regressions and log normal accelerated failure-time regression to integrate the information between these two platforms to predict the survival of the subjects. We place conjugate priors on the regression parameters and derive the Gibbs sampler using the conditional distributions of them. Our extensive simulation study shows that the integrative model provides a better fit to the data than its closest competitor. The analyses of glioblastoma cancer data and the breast cancer data from TCGA, the largest genomics and transcriptomics database, support our findings. The developed method is wrapped in R package available at https://github.com/MAITYA02/semmcmc. Supplementary data are available at Bioinformatics online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.