Abstract

Constructing an accurate effort prediction model is a challenge in Software Engineering. This paper presents three Bayesian statistical software effort prediction models for database-oriented software systems, which are developed using a specific 4GL toolsuite. The models consist of specification-based software size metrics and development team's productivity metric. The models are constructed based on the subjective knowledge of human expert and calibrated using empirical data collected from 17 software systems developed in the target environment. The models' predictive accuracy is evaluated using subsets of the same data, which were not used for the models' calibration. The results show that the models have achieved very good predictive accuracy in terms of MMRE and pred measures. Hence, it is confirmed that the Bayesian statistical models can predict effort successfully in the target environment. In comparison with commonly used multiple linear regression models, the Bayesian statistical models'predictive accuracy is equivalent in general. However, when the number of software systems used for the models' calibration becomes smaller than five, the predictive accuracy of the best Bayesian statistical models are significantly better than the multiple linear regression model. This result suggests that the Bayesian statistical models would be a better choice when software organizations/practitioners do not posses sufficient empirical data for the models' calibration. The authors expect these findings to encourage more researchers to investigate the use of Bayesian statistical models for predicting software effort.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.