Abstract
We introduce a Bayesian spectral analysis model for one-dimensional signals where the observation noise is assumed to be Student-t distributed, for robustness to outliers, and we estimate the posterior distributions of the Student-t hyperparameters, as well as the amplitudes and phases of the component sinusoids. The integrals required for exact Bayesian inference are intractable, so we use variational approximation. We show that the approximate phase posteriors are Generalised von Mises distributions of order 2 and that their spread increases as the signal to noise ratio decreases. The model is demonstrated against synthetic data, and real GPS and Wolf's sunspot data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.