Abstract

BackgroundThe ability to produce timely and accurate estimation of dengue cases can significantly impact disease control programs. A key challenge for dengue control in Thailand is the systematic delay in reporting at different levels in the surveillance system. Efficient and reliable surveillance and notification systems are vital to monitor health outcome trends and early detection of disease outbreaks which vary in space and time.MethodsPredicting the trend in dengue cases in real-time is a challenging task in Thailand due to a combination of factors including reporting delays. We present decision support using a spatiotemporal nowcasting model which accounts for reporting delays in a Bayesian framework with sliding windows. A case study is presented to demonstrate the proposed nowcasting method using weekly dengue surveillance data in Bangkok at district level in 2010.ResultsThe overall real-time estimation accuracy was 70.69% with 59.05% and 79.59% accuracy during low and high seasons averaged across all weeks and districts. The results suggest the model was able to give a reasonable estimate of the true numbers of cases in the presence of delayed reports in the surveillance system. With sliding windows, models could also produce similar accuracy to estimation with the whole data.ConclusionsA persistent challenge for the statistical and epidemiological communities is to transform data into evidence-based knowledge that facilitates policy making about health improvements and disease control at the individual and population levels. Improving real-time estimation of infectious disease incidence is an important technical development. The effort in this work provides a template for nowcasting in practice to inform decision making for dengue control.

Highlights

  • The ability to produce timely and accurate estimation of dengue cases can significantly impact disease control programs

  • The aim of this work is to estimate the number of dengue cases with reporting delays which can be considered as a latent variable

  • The numbers in weeks of under reported dengue cases due to reporting delays by district averaged across 52 weeks in 2010 are shown in Fig. 4

Read more

Summary

Introduction

The ability to produce timely and accurate estimation of dengue cases can significantly impact disease control programs. For the past 10 years, the Thai surveillance system at the central level has been systematized and adopted electronic forms while there is no mandatory digital form at the local level and paper forms are widely used. Local hospitals procure their own systems for entering and transferring data. Combinations of hardcopy and electronic reports are used to notify cases from local health facilities to provincial health offices and to the Bureau of Epidemiology, Department of Disease Control, where data on all reported cases are collected and analyzed

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call