Abstract
In the early phases of growth, resurgent epidemic waves of SARS-CoV-2 incidence have been characterised by localised outbreaks. Therefore, understanding the geographic dispersion of emerging variants at the start of an outbreak is key for situational public health awareness. Using telecoms data, we derived mobility networks describing the movement patterns between local authorities in England, which we have used to inform the spatial structure of a Bayesian BYM2 model. Surge testing interventions can result in spatio-temporal sampling bias, and we account for this by extending the BYM2 model to include a random effect for each timepoint in a given area. Simulated-scenario modelling and real-world analyses of each variant that became dominant in England were conducted using our BYM2 model at local authority level in England. Simulated datasets were created using a stochastic metapopulation model, with the transmission rates between different areas parameterised using telecoms mobility data. Different scenarios were constructed to reproduce real-world spatial dispersion patterns that could prove challenging to inference, and we used these scenarios to understand the performance characteristics of the BYM2 model. The model performed better than unadjusted test positivity in all the simulation-scenarios, and in particular when sample sizes were small, or data was missing for geographical areas. Through the analyses of emerging variant transmission across England, we found a reduction in the early growth phase geographic clustering of later dominant variants as England became more interconnected from early 2022 and public health interventions were reduced. We have also shown the recent increased geographic spread and dominance of variants with similar mutations in the receptor binding domain, which may be indicative of convergent evolution of SARS-CoV-2 variants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.