Abstract

Quantification of precipitation extremes is important for flood planning purposes, and a common measure of extreme events is the r-year return level. We present a method for producing maps of precipitation return levels and uncertainty measures and apply it to a region in Colorado. Separate hierarchical models are constructed for the intensity and the frequency of extreme precipitation events. For intensity, we model daily precipitation above a high threshold at 56 weather stations with the generalized Pareto distribution. For frequency, we model the number of exceedances at the stations as binomial random variables. Both models assume that the regional extreme precipitation is driven by a latent spatial process characterized by geographical and climatological covariates. Effects not fully described by the covariates are captured by spatial structure in the hierarchies. Spatial methods were improved by working in a space with climatological coordinates. Inference is provided by a Markov chain Monte Carlo algorithm and spatial interpolation method, which provide a natural method for estimating uncertainty.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.