Abstract
The ability to extract physiological source signals to control various prosthetics offer tremendous therapeutic potential to improve the quality of life for patients suffering from motor disabilities. Regardless of the modality, recordings of physiological source signals are contaminated with noise and interference along with crosstalk between the sources. These impediments render the task of isolating potential physiological source signals for control difficult. In this paper, a novel Bayesian Source Filter for signal Extraction (BSFE) algorithm for extracting physiological source signals for control is presented. The BSFE algorithm is based on the source localization method Champagne and constructs spatial filters using Bayesian methods that simultaneously maximize the signal to noise ratio of the recovered source signal of interest while minimizing crosstalk interference between sources. When evaluated over peripheral nerve recordings obtained in vivo, the algorithm achieved the highest signal to noise interference ratio ( 7.00 ±3.45 dB) amongst the group of methodologies compared with average correlation between the extracted source signal and the original source signal R = 0.93. The results support the efficacy of the BSFE algorithm for extracting source signals from the peripheral nerve.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Systems and Rehabilitation Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.