Abstract
Bayesian approach has become a commonly used method for inverse problems arising in signal and image processing. One of the main advantages of the Bayesian approach is the possibility to propose unsupervised methods where the likelihood and prior model parameters can be estimated jointly with the main unknowns. In this paper, we propose to consider linear inverse problems in which the noise may be non-stationary and where we are looking for a sparse solution. To consider both of these requirements, we propose to use Student-t prior model both for the noise of the forward model and the unknown signal or image. The main interest of the Student-t prior model is its Infinite Gaussian Scale Mixture (IGSM) property. Using the resulted hierarchical prior models we obtain a joint posterior probability distribution of the unknowns of interest (input signal or image) and their associated hidden variables. To be able to propose practical methods, we use either a Joint Maximum A Posteriori (JMAP) estimator or an appropriate Variational Bayesian Approximation (VBA) technique to compute the Posterior Mean (PM) values. The proposed method is applied in many inverse problems such as deconvolution, image restoration and computed tomography. In this paper, we show only some results in signal deconvolution and in periodic components estimation of some biological signals related to circadian clock dynamics for cancer studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.