Abstract

Bayesian agents learn about a moving target, such as a commodity price, using private signals and their network neighbors' estimates. The weights agents place on these sources of information are endogenously determined by the precisions and correlations of the sources; the weights, in turn, determine future correlations. We study stationary equilibria\textemdash ones in which all of these quantities are constant over time. Equilibria in linear updating rules always exist, yielding a Bayesian learning model as tractable as the commonly-used DeGroot heuristic. Equilibria and the comparative statics of learning outcomes can be readily computed even in large networks. Substantively, we identify pervasive inefficiencies in Bayesian learning. In any stationary equilibrium where agents put positive weights on neighbors' actions, learning is Pareto inefficient in a generic network: agents rationally overuse social information and underuse their private signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.