Abstract
In this work, we propose a novel approach to perform Dependent Component Analysis (DCA). DCA can be thought as the separation of latent, dependent sources from their observed mixtures which is a more realistic model than Independent Component Analysis (ICA) where the sources are assumed to be independent. In general, the sources can be spatio‐temporally dependent and the mixing system may be non‐stationary. Here, we propose a DCA algorithm, that combines concepts of particle filters and Markov Chain Monte Carlo (MCMC) methods in order to separate non‐stationary mixtures of spatially dependent Gaussian sources.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.