Abstract

ABSTRACT In the era of precision medicine, it is of increasing interest to consider multiple strata (e.g. indications, regions, or subgroups) within a single oncology dose-finding study when identifying the maximum tolerated dose (MTD). We propose two Bayesian semi-parametric designs (BSD) for dose-finding with multiple strata to allow for both adaptively dosing patients based on various toxicity profiles and efficient identification of the MTD for each stratum. We develop non-parametric priors based on the Dirichlet process to allow for a flexible prior distribution and negate the need for a pre-specified exchangeability parameter. The two BSD models are built under different prior beliefs of strata heterogeneity and allow for appropriate borrowing of information across similar strata. Simulation studies are performed to evaluate the BSD model performance by comparing it with existing methods, including the fully stratified, exchangeability, and exchangeability–non-exchangeability models. In general, our BSD models outperform the competing methods in correctly identifying the MTD for different strata and necessitate a smaller sample size to determine the MTD. The BSD models are robust to various heterogeneity assumptions and can be easily extended to other binary and time to event endpoints.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.