Abstract
A Bayesian seminonparametric approach to ARCH models is developed with the advantage that small sample results are obtained even when the likelihood function is subject to nonlinear inequality constraints (as in the ARCH models used in this paper). The seminonparametric nature of the approach allows for the relaxation of the assumption of normal errors. An application and a small Monte Carlo study indicate that the methods the author advocates are both feasible and necessary. Copyright 1994 by MIT Press.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.