Abstract

In this paper, we propose a class of image restoration algorithms based on the Bayesian approach and a new hierarchical spatially adaptive image prior. The proposed prior has the following two desirable features. First, it models the local image discontinuities in different directions with a model which is continuous valued. Thus, it preserves edges and generalizes the on/off (binary) line process idea used in previous image priors within the context of Markov random fields (MRFs). Second, it is Gaussian in nature and provides estimates that are easy to compute. Using this new hierarchical prior, two restoration algorithms are derived. The first is based on the maximum a posteriori principle and the second on the Bayesian methodology. Numerical experiments are presented that compare the proposed algorithms among themselves and with previous stationary and non stationary MRF-based with line process algorithms. These experiments demonstrate the advantages of the proposed prior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.