Abstract

We and other animals learn because there is some aspect of the world about which we are uncertain. This uncertainty arises from initial ignorance, and from changes in the world that we do not perfectly know; the uncertainty often becomes evident when our predictions about the world are found to be erroneous. The Rescorla-Wagner learning rule, which specifies one way that prediction errors can occasion learning, has been hugely influential as a characterization of Pavlovian conditioning and, through its equivalence to the delta rule in engineering, in a much wider class of learning problems. Here, we review the embedding of the Rescorla-Wagner rule in a Bayesian context that is precise about the link between uncertainty and learning, and thereby discuss extensions to such suggestions as the Kalman filter, structure learning, and beyond, that collectively encompass a wider range of uncertainties and accommodate a wider assortment of phenomena in conditioning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.