Abstract

Group testing involves pooling individual specimens (e.g., blood, urine, swabs, etc.) and testing the pools for the presence of a disease. When individual covariate information is available (e.g., age, gender, number of sexual partners, etc.), a common goal is to relate an individual's true disease status to the covariates in a regression model. Estimating this relationship is a nonstandard problem in group testing because true individual statuses are not observed and all testing responses (on pools and on individuals) are subject to misclassification arising from assay error. Previous regression methods for group testing data can be inefficient because they are restricted to using only initial pool responses and/or they make potentially unrealistic assumptions regarding the assay accuracy probabilities. To overcome these limitations, we propose a general Bayesian regression framework for modeling group testing data. The novelty of our approach is that it can be easily implemented with data from any group testing protocol. Furthermore, our approach will simultaneously estimate assay accuracy probabilities (along with the covariate effects) and can even be applied in screening situations where multiple assays are used. We apply our methods to group testing data collected in Iowa as part of statewide screening efforts for chlamydia, and we make user-friendly R code available to practitioners.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.