Abstract

The paper introduces a Bayesian estimation method for quantile regression in univariate ordinal models. Two algorithms are presented that utilize the latent variable inferential framework of Albert and Chib (1993) and the normal-exponential mixture representation of the asymmetric Laplace distribution. Estimation utilizes Markov chain Monte Carlo simulation - either Gibbs sampling together with the Metropolis-Hastings algorithm or only Gibbs sampling. The algorithms are employed in two simulation studies and implemented in the analysis of problems in economics (educational attainment) and political economy (public opinion on extending "Bush Tax" cuts). Investigations into model comparison exemplify the practical utility of quantile ordinal models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.