Abstract
This article considers Bayesian Φ q -optimal designs for multi-factor additive non linear models where model errors are heteroscedastic. For additive non linear models with a constant term, a sufficient condition is given in order to derive Bayesian Φ q -optimal product designs, which are achieved from univariate optimal designs with respect to every marginal model with a single factor. However, in the case of ignoring a constant term, an additional assumption of orthogonality is proposed to ensure that optimal designs can be found. Then, the corresponding optimal product designs can be built with the help of the equivalence theorem for the Bayesian Φ q -optimality criterion. Several examples are given to illustrate the effectiveness of theoretical results on optimal product designs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.