Abstract

Optimally superimposing protein structures is essential to study their structure, function, dynamics and evolution. We present THESEUS NUTS (No U-Turn Sampler), a Bayesian version of the THESEUS model [1] –[3] which relies on maximum likelihood estimation. The probabilistic model interprets each protein as a rotated and translated noisy observation of a latent mean structure. Unlike conventional methods [4], THESEUS takes into account the differences in correlations between the atoms in the structure. This paper extends the previous THESEUS MAP (Maximum A Posteriori) model, [5] to full Bayesian inference by making use of the iterative NUTS [6], a Hamiltonian Monte Carlo method. The model delivers consistent results and is computationally efficient thanks to its implementation in the probabilistic programming language NumpPyro [7], [8] which in turn relies upon JAX [9], a system for high-performance machine learning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.