Abstract
This article aims to examine whether words listed in reasons for appointments could effectively predict laboratory-verified influenza cases in syndromic surveillance systems. Data were collected from the Armed Forces Health Longitudinal Technological Application medical record system. We used 2 algorithms to combine the impact of words within reasons for appointments: Dependent (DBSt) and Independent (IBSt) Bayesian System. We used receiver operating characteristic curves to compare the accuracy of these 2 methods of processing reasons for appointments against current and previous lists of diagnoses used in the Department of Defense's syndromic surveillance system. We examined 13,096 cases, where the results of influenza tests were available. Each reason for an appointment had an average of 3.5 words (standard deviation = 2.2 words). There was no difference in performance of the 2 algorithms. The area under the curve for IBSt was 0.58 and for DBSt was 0.56. The difference was not statistically significant (McNemar statistic = 0.0054; P = 0.07). These data suggest that reasons for appointments can improve the accuracy of lists of diagnoses in predicting laboratory-verified influenza cases. This study recommends further exploration of the DBSt algorithm and reasons for appointments in predicting likely influenza cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.