Abstract

We characterize priors which asymptotically match the posterior coverage probability of a Bayesian prediction region with the corresponding frequentist coverage probability. This is done considering both posterior quantiles and highest predictive density regions with reference to a future observation. The resulting priors are shown to be invariant under reparameterization. The role of Jeffreys’ prior in this regard is also investigated. It is further shown that, for any given prior, it may be possible to choose an interval whose Bayesian predictive and frequentist coverage probabilities are asymptotically matched.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.