Abstract

Policy gradient methods are reinforcement learning algorithms that adapt a parameterized policy by following a performance gradient estimate. Conventional policy gradient methods use Monte-Carlo techniques to estimate this gradient. Since Monte Carlo methods tend to have high variance, a large number of samples is required, resulting in slow convergence. In this paper, we propose a Bayesian framework that models the policy gradient as a Gaussian process. This reduces the number of samples needed to obtain accurate gradient estimates. Moreover, estimates of the natural gradient as well as a measure of the uncertainty in the gradient estimates are provided at little extra cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.