Abstract

In this paper it is demonstrated how the Bayesian parametric bootstrap can be adapted to models with intractable likelihoods. The approach is most appealing when the computationally efficient semi-automatic approximate Bayesian computation (ABC) summary statistics are selected. The parametric bootstrap approximation is used to form a proposal distribution in ABC algorithms to improve the computational efficiency. The new approach is demonstrated through the sequential Monte Carlo and the ABC importance and rejection sampling algorithms. We found efficiency gains in two simulation studies, the univariate g-and-k quantile distribution, a toggle switch model in dynamic bionetworks, and in a stochastic model describing expanding melanoma cell colonies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.