Abstract
The Laser Interferometer Space Antenna (LISA), which is currently under construction, is designed to measure gravitational wave signals in the milli-Hertz frequency band. It is expected that tens of millions of Galactic binaries will be the dominant sources of observed gravitational waves. The Galactic binaries producing signals at mHz frequency range emit quasi monochromatic gravitational waves, which will be constantly measured by LISA. To resolve as many Galactic binaries as possible is a central challenge of the upcoming LISA data set analysis. Although it is estimated that tens of thousands of these overlapping gravitational wave signals are resolvable, and the rest blurs into a galactic foreground noise; extracting tens of thousands of signals using Bayesian approaches is still computationally expensive. We developed a new end-to-end pipeline using Gaussian Process Regression to model the log-likelihood function in order to rapidly compute Bayesian posterior distributions. Using the pipeline we are able to solve the Lisa Data Challenge (LDC) 1-3 consisting of noisy data as well as additional challenges with overlapping signals and particularly faint signals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.