Abstract

With the ever-growing scale of social websites and online transactions, in past decade, Recommender System (RS) has become a crucial tool to overcome information overload, due to its powerful capability in information filtering and retrieval. Traditional rating prediction based RS could learn user’s preference according to the explicit feedback, however, such numerical user-item ratings are always unavailable in real life. By contrast, pairwise learning algorithms could directly optimize for ranking and provide personalized recommendation from implicit feedback, although suffering from such data sparsity and slow convergence problems. Motivated by these, in this article, a novel collaborative pairwise learning to rank method referred to as BPLR is proposed, which aims to improve the performance of personalized ranking from implicit feedback. To this end, BPLR tries to partition items into positive feedback, potential feedback and negative feedback, and takes account of the neighborhood relationship between users as well as the item similarity while deriving the potential candidates, moreover, a dynamic sampling strategy is designed to reduce the computational complexity and speed up model training. Empirical experiments over four real world datasets certificate the effectiveness and efficiency of BPLR, which could speed up convergence, and outperform state-of-the-art algorithms significantly in personalized top-N recommendation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.