Abstract
<p><span lang="EN-US">The use of eggshell-based foamed concrete represents a sustainable approach to enhancing environmental friendliness in construction materials. This study investigates the predictive modelling of the compressive strength of eggshell-based foamed concrete through a deep learning model, fine-tuned via Bayesian optimization. Utilizing a dataset of 360 samples with diverse input parameters, the model was optimized with four hidden layers (28, 21, 28, and 21 neurons) and the Rectified Linear Unit (ReLU) activation function. The model demonstrated excellent predictive accuracy, achieving a mean squared error of 0.0522, a mean absolute error of 0.0382, and an R² value of 0.9548 over 200 epochs. Notably, the water/cement ratio emerged as the most influential factor in prediction accuracy. This research provides a robust, AI-driven method for predicting the compressive strength of sustainable construction materials, contributing to advancements in environmental technology and the optimization of eco-friendly construction practices.</span></p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.