Abstract
Bayesian optimization (BO) is a popular approach for expensive black-box optimization, with applications including parameter tuning, experimental design, and robotics. BO usually models the objective function by a Gaussian process (GP), and iteratively samples the next data point by maximizing an acquisition function. In this paper, we propose a new general framework for BO by generating pseudo-points (i.e., data points whose objective values are not evaluated) to improve the GP model. With the classic acquisition function, i.e., upper confidence bound (UCB), we prove that the cumulative regret can be generally upper bounded. Experiments using UCB and other acquisition functions, i.e., probability of improvement (PI) and expectation of improvement (EI), on synthetic as well as real-world problems clearly show the advantage of generating pseudo-points.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.