Abstract

This paper studies the allocation of shared resources between ultra-reliable low-latency communication (URLLC) and enhanced mobile broadband (eMBB) in the emerging 5G and beyond cellular networks. In this paper, we design a unique queuing mechanism for the joint eMBB/URLLC system. The aim is to flexibly schedule URLLC traffic to enhance the total eMBB throughput and the reliability of URLLC packets (i.e., the probability of not dropping URLLC packets in each mini-slot) while maintaining a satisfactory transmission latency as per the 3GPP requirements. Precisely, by deriving the steady-state probabilities of URLLC queue backlog analytically, we formulate a stochastic optimization problem to maximize the total normalized eMBB throughput and the URLLC utility. Due to the stochastic nature of the objective function, it is expensive to evaluate it for any set of inputs, and thus the Bayesian optimization is applied to obtain the optimal results of such a black-box objective function. Numerical results demonstrate that the proposed queuing mechanism never violates the latency requirement of the URLLC services but improves the reliability. It also enhances the total normalized eMBB throughput as compared to the method without queuing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.