Abstract

The process of drug design requires the initial identification of compounds that bind their targets with high affinity and selectivity. Advances in generative modeling of small molecules based on deep learning are offering novel opportunities for making this process faster and cheaper. Here, we propose an approach to achieve this goal, where predictions of binding affinity are used in conjunction with the Junction Tree Variational Autoencoder (JTVAE) whose latent space is used to facilitate the efficient exploration of the chemical space using a Bayesian optimization strategy. The exploration identifies small molecules predicted to have both high affinity and high selectivity by using an objective function that optimizes the binding to the target while penalizing the binding to off-targets. The framework is demonstrated for FMS-like tyrosine kinase 3 (FLT3) and shown to predict small molecules with predicted affinity and selectivity comparable to those of clinically approved drugs for this target.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.