Abstract

Abstract Bayesian optimal design of experiments (BODEs) have been successful in acquiring information about a quantity of interest (QoI) which depends on a black-box function. BODE is characterized by sequentially querying the function at specific designs selected by an infill-sampling criterion. However, most current BODE methods operate in specific contexts like optimization, or learning a universal representation of the black-box function. The objective of this paper is to design a BODE for estimating the statistical expectation of a physical response surface. This QoI is omnipresent in uncertainty propagation and design under uncertainty problems. Our hypothesis is that an optimal BODE should be maximizing the expected information gain in the QoI. We represent the information gain from a hypothetical experiment as the Kullback–Liebler (KL) divergence between the prior and the posterior probability distributions of the QoI. The prior distribution of the QoI is conditioned on the observed data, and the posterior distribution of the QoI is conditioned on the observed data and a hypothetical experiment. The main contribution of this paper is the derivation of a semi-analytic mathematical formula for the expected information gain about the statistical expectation of a physical response. The developed BODE is validated on synthetic functions with varying number of input-dimensions. We demonstrate the performance of the methodology on a steel wire manufacturing problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.