Abstract

This work proposes a Bayesian inference method for the reduced-order modeling of time-dependent systems. Informed by the structure of the governing equations, the task of learning a reduced-order model from data is posed as a Bayesian inverse problem with Gaussian prior and likelihood. The resulting posterior distribution characterizes the operators defining the reduced-order model, hence the predictions subsequently issued by the reduced-order model are endowed with uncertainty. The statistical moments of these predictions are estimated via a Monte Carlo sampling of the posterior distribution. Since the reduced models are fast to solve, this sampling is computationally efficient. Furthermore, the proposed Bayesian framework provides a statistical interpretation of the regularization term that is present in the deterministic operator inference problem, and the empirical Bayes approach of maximum marginal likelihood suggests a selection algorithm for the regularization hyperparameters. The proposed method is demonstrated on two examples: the compressible Euler equations with noise-corrupted observations, and a single-injector combustion process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.