Abstract
Detecting moving objects using stationary cameras is an important precursor to many activity recognition, object recognition and tracking algorithms. In this paper, three innovations are presented over existing approaches. Firstly, the model of the intensities of image pixels as independently distributed random variables is challenged and it is asserted that useful correlation exists in the intensities of spatially proximal pixels. This correlation is exploited to sustain high levels of detection accuracy in the presence of nominal camera motion and dynamic textures. By using a non-parametric density estimation method over a joint domain-range representation of image pixels, multi-modal spatial uncertainties and complex dependencies between the domain (location) and range (color) are directly modeled. Secondly, temporal persistence is proposed as a detection criteria. Unlike previous approaches to object detection which detect objects by building adaptive models of the only background, the foreground is also modeled to augment the detection of objects (without explicit tracking) since objects detected in a preceding frame contain substantial evidence for detection in a current frame. Third, the background and foreground models are used competitively in a MAP-MRF decision framework, stressing spatial context as a condition of pixel-wise labeling and the posterior function is maximized efficiently using graph cuts. Experimental validation of the proposed method is presented on a diverse set of dynamic scenes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.