Abstract
The Gaussian process is a common model in a wide variety of applications, such as environmental modeling, computer experiments, and geology. Two major challenges often arise: First, assuming that the process of interest is stationary over the entire domain often proves to be untenable. Second, the traditional Gaussian process model formulation is computationally inefficient for large datasets. In this paper, we propose a new Gaussian process model to tackle these problems based on the convolution of a smoothing kernel with a partitioned latent process. Nonstationarity can be modeled by allowing a separate latent process for each partition, which approximates a regional clustering structure. Partitioning follows a binary tree generating process similar to that of Classification and Regression Trees. A Bayesian approach is used to estimate the partitioning structure and model parameters simultaneously. Our motivating dataset consists of 11918 precipitation anomalies. Results show that our model has promising prediction performance and is computationally efficient for large datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.