Abstract
Seemingly unrelated regression (SUR) models are useful in studying the interactions among economic variables. In a high dimensional setting, these models require a large number of parameters to be estimated and suffer of inferential problems. To avoid overparametrization issues, we propose a hierarchical Dirichlet process prior (DPP) for SUR models, which allows shrinkage of coefficients toward multiple locations. We propose a two-stage hierarchical prior distribution, where the first stage of the hierarchy consists in a lasso conditionally independent prior of the Normal-Gamma family for the coefficients. The second stage is given by a random mixture distribution, which allows for parameter parsimony through two components: the first is a random Dirac point-mass distribution, which induces sparsity in the coefficients; the second is a DPP, which allows for clustering of the coefficients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.