Abstract
Integrated nested Laplace approximations (INLA) are a recently proposed approximate Bayesian approach to fit structured additive regression models with latent Gaussian field. INLA method, as an alternative to Markov chain Monte Carlo techniques, provides accurate approximations to estimate posterior marginals and avoid time-consuming sampling. We show here that two classical nonparametric smoothing problems, nonparametric regression and density estimation, can be achieved using INLA. Simulated examples and R functions are demonstrated to illustrate the use of the methods. Some discussions on potential applications of INLA are made in the paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.