Abstract
Bayesian hierarchical methods implemented for small area estimation focus on reducing the noise variation in published government official statistics by borrowing information among dependent response values. Even the most flexible models confine parameters defined at the finest scale to link to each data observation in a one-to-one construction. We propose a Bayesian multiresolution formulation that utilizes an ensemble of observations at a variety of coarse scales in space and time to additively nest parameters we define at a finer scale, which serve as our focus for estimation. Our construction is motivated by and applied to the estimation of 1-year period employment totals, indexed by county, from statistics published at coarser areal domains and multi-year periods in the American Community Survey (ACS). We construct a nonparametric mixture of Gaussian processes as the prior on a set of regression coefficients of county-indexed latent functions over multiple survey years. We evaluate a modified Dirichlet process prior that incorporates county-year predictors as the mixing measure. Each county-year parameter of a latent function is estimated from multiple coarse-scale observations in space and time to which it links. The multiresolution formulation is evaluated on synthetic data and applied to the ACS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.