Abstract
This thesis deals with a number of statistical problems where either censoring or shape-constraints play a role. These problems have mostly been treated from a frequentist statistical perspective. Over the past decades, the approach to statistics has gained popularity and this is the approach that is adopted in this thesis. We consider nonparametric statistical models, i.e. models indexed by a parameter that is not of finite dimension. For three different models we investigate the asymptotic properties of the posterior distribution under a frequentist setup. We derive either posterior consistency or posterior contraction rat es. Such results are relevant, as these provides a frequentist justification of using point estimators derived from the posterior. Besides theoretical results, we develop computational methods for obtaining draws from the posterior. Overall, this work is at the intersection of the research areas estimation under shape constraints and censoring, Bayesian nonparametrics and Bayesian computation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.