Abstract

AbstractThe integration of data‐driven models such as neural networks for high‐consequence decision making has been largely hindered by their lack of predictive power away from training data and their inability to quantify uncertainties often prevalent in engineering applications. This article presents an ensembling method with function‐space regularization, which allows to integrate prior information about the function of interest, thus improving generalization performance, while enabling quantification of aleatory and epistemic uncertainties. This framework is applied to build a probabilistic ambulance travel time predictor, leveraging historical ambulance data provided by the Fire Department of New York City. Results show that the integration of a non‐Gaussian likelihood and prior information from a road network analysis yields appropriate probabilistic predictions of travel times, which could be further leveraged for emergency medical service (EMS) decision making.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.