Abstract
Portfolio analysis studies the impact of economic and financial scenarios on the performance of an investment portfolio, while portfolio optimization concerns asset allocation to achieve a trade-off between risk and return. In this chapter we exploit the interplay between modern portfolio theory and Bayesian networks to describe a new framework for portfolio analysis and optimization. Bayesian networks provide an effective way to interface models to data, allow efficient evidential reasoning, while their graphical language offers an intuitive interface by which the analyst can elicit his/her knowledge. The proposed framework leverages on evidential reasoning to understand the behavior of an investment portfolio in different economic and financial scenarios. It allows to formulate and solve a portfolio optimization problem, while coherently taking into account the investor’s market views. The Bayesian network framework for portfolio analysis and optimization is instantiated on the DJ Euro Stoxx 50 Index. Examples of portfolio analysis and optimization, exploiting evidential reasoning on Bayesian networks, are presented and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.