Abstract
In this paper, we study Bayesian network (BN) for form identification based on partially filled fields. It uses electronic ink-tracing files without having any information about form structure. Given a form format, the ink-tracing files are used to build the BN by providing the possible relationships between corresponding fields using conditional probabilities, that goes from individual fields up to the complete model construction. To simplify the BN, we sub-divide a single form into three different areas: header, body and footer, and integrate them together, where we study three fundamental BN learning algorithms: Naive, Peter & Clark and maximum weighted spanning tree. Under this framework, we validate it with a real-world industrial problem i.e., electronic note-taking in form processing. The approach provides satisfactory results, attesting the interest of BN for exploiting the incomplete form analysis problems, in particular.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Machine Learning and Cybernetics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.