Abstract

Parkinson's disease (PD) is characterized by a long prodromal phase with a multitude of markers indicating an increased PD risk prior to clinical diagnosis based on motor symptoms. Current PD prediction models do not consider interdependencies of single predictors, lack differentiation by subtypes of prodromal PD, and may be limited and potentially biased by confounding factors, unspecific assessment methods and restricted access to comprehensive marker data of prospective cohorts. We used prospective data of 18 established risk and prodromal markers of PD in 1178 healthy, PD-free individuals and 24 incident PD cases collected longitudinally in the Tübingen evaluation of Risk factors for Early detection of NeuroDegeneration (TREND) study at 4 visits over up to 10 years. We employed artificial intelligence (AI) to learn and quantify PD marker interdependencies via a Bayesian network (BN) with probabilistic confidence estimation using bootstrapping. The BN was employed to generate a synthetic cohort and individual marker profiles. Robust interdependencies were observed for BN edges from age to subthreshold parkinsonism and urinary dysfunction, sex to substantia nigra hyperechogenicity, depression, non-smoking and to constipation; depression to symptomatic hypotension and excessive daytime somnolence; solvent exposure to cognitive deficits and to physical inactivity; and non-smoking to physical inactivity. Conversion to PD was interdependent with prior subthreshold parkinsonism, sex and substantia nigra hyperechogenicity. Several additional interdependencies with lower probabilistic confidence were identified. Synthetic subjects generated via the BN based representation of the TREND study were realistic as assessed through multiple comparison approaches of real and synthetic data. Altogether our work demonstrates the potential of modern AI approaches (specifically BNs) both for modelling and understanding interdependencies between PD risk and prodromal markers, which are so far not accounted for in PD prediction models, as well as for generating realistic synthetic data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.