Abstract

Estimating the contribution of the forests to carbon sequestration is commonly done by applying forest growth models. Such models inherently use field observations such as leaf area index (LAI), whereas a relevant information is also available from remotely sensed images. This paper aims to improve the LAI estimated from the forest growth model [physiological principals predicting growth (3-PG)] by combining these values with the LAI derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery. A Bayesian networks (BNs) approach addresses the bias in the 3-PG model and the noise of the MODIS images. A novel inference strategy within the BN has been developed in this paper to take care of the different structures of the inaccuracies in the two data sources. The BN is applied to the Speulderbos forest in The Netherlands, where the detailed data were available. This paper shows that the outputs obtained with the BN were more accurate than either the 3-PG or the MODIS estimate. It was also found that the BN is more sensitive to the variation of the LAI derived from MODIS than to the variation of the LAI 3-PG values. In this paper, we conclude that the BNs can improve the estimation of the LAI values by combining a forest growth model with satellite imagery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.