Abstract
The assessment of existing infrastructures in the energy sector is of great economic significance worldwide. Fossil power stations are reaching their design service life and rational decisions concerning extensions of service life, maintenance and replacements of devices should be based on updated information of the actual conditions of the energy devices and their components, and on cost-benefit analysis using risk analysis and probabilistic optimisation procedures.The contribution provides an integrated framework for probabilistic reliability and risk assessment of existing energy production units considering availability and human safety criteria. An extensive case study focused on risks of an energy production unit in a fossil power station is provided to support practical applications. A Bayesian network is thereby implemented to assess the risks of the selected production unit. Special emphasis is given to the input data consisting of failure rates obtained from recorded data and expert judgements. The influence of uncertainties in the considered performance indicators on the availability of the unit is analysed. It is shown that a reasonably simplified framework can provide a valuable assessment of the influence of individual devices and their components on availability and societal risk, identifying thus the major risk contributors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.